ASPEN

A suggested security protocol notation

Anders Andersen
UiT The Arctic University of Norway

2026/01/31 08:59:48
(aspen.sty version 1.25, 2026/01/28 22:11:32)

In security literature, different notations for cryptographic values, functions and protocols have been

used and suggested. Three often cited references for such notations are “Kerberos: An Authentication

Service for Open Network Systems” [[12], “Exploring Kerberos, the Protocol for Distributed Security

in Windows 2000” [8], and ‘A Formal Semantics for Protocol Narrations” [5]. The notation ASPEN

presented here is strongly inspired by notations found in these three references, notations found in

text books [4]l, and the notation used in my own publications, teaching and presentations. ASPEN
» o«

is closely related to what is often called “security protocol notation”, “standard protocol engineering
notation” [[2, 3]], “standard protocol notation” [4]], or “protocol narrations” [[5].

This text documents the AspEN notation and how this notation can be used in KIEX documents using
the KX package aspen. Since the KTgX package aspen optionally provides support for the BAN logic
notation, we have included the BAN logic notation in the documentation.

AspeN| is not a formalism, like BAN (Bur- Contents
rows—Abadi-Needham) logic [7], or a calculus
for analysis of cryptographic protocols, like Spi [Tntroduction| 2
calculus [1]. For a more detailed analysis of
cryptographic protocols, more expressive nota- 3
tions like BAN logic, Spi calculus, or something 21 ZI;?N S 3
. T T B3 BANIOGId . e e e e e
similar should be considered. Other references 2 BANTogid 7
presenting relevant notations include, but are 3 Use the notations in text 9
not limited to: [6,/0, AT]. B _ASPEN 9
.................. 18
A— S :{A,B,N}} [3.3 Seriesofsteps| 19
. /
S— AL {Na’ B,Ku B, {KA,B’A}KM }K/\ s |4 Notation usage examples| 21
A= B Ky Ak, A References 22
B— A {Ngkg,, i
A— B:{N/—1 : 23
{ b }K’W [B.1 Notes on the suggested notation| 23
[B.2 Notes on the typesetting options| 24

Figure 1: AsPEN example (what protocol is it?)

'Originally, I had no intention to name the notation presented here. While working on this text, it became clear that it was
inconvenient to not be able to refer to the notation with a short name. The name ASPEN can be an abbreviation for ‘A Security
Protocol Engineering Notation”, but for me it is now short for “Anderson-inspired Standard Protocol Engineering Notation”, in
memory of the late Professor Ross J. Anderson who has meant so much for the fields of computer security, distributed systems,
and, in particular, security engineering [12} [3} [4].

https://www.cl.cam.ac.uk/archive/rja14/
https://www.cl.cam.ac.uk/archive/rja14/book.html

Values: true, {m}, H{m} Values, structured values and typed structured values. In this
notation a message is seen as a structured value.

Principals: A, B, S Principals in security protocols, including clients, servers, and
other participants.

Keys: K45, K éﬁ, K /;, K, Cryptographic keys, used to encrypt, decrypt, sign and verify
values and messages.

Nonces: N;, Ny, Ng Nonces are generated to be fresh and commonly include a

timestamp or a number that is used only once.

Random: R, R} Random values can be a variant of nonces. The ' mark hints
about limited useful lifetime (once, or during a session).

Time: Ts, Ty, L Timestamps and lifetime are often used, together with nonces,
to avoid replay and session keys that are too old.

Strings: “Hello world!” Not necessary for the intended notation usage, but text strings
are often found in examples in the litterateur.

Variables: X,¥,%, a,b,c A variable can be assigned a value. Might also be used in the
context of “we are not sure about its value”.

Functions: H(m), Func(x,y) —z A function can take arguments and produce a value. Some
functions are the constructor of typed structured values.

Labels: R Labels are used to label steps when a security protocols is pre-
sented as a series of steps.

KTgX code: \func{Func}{x,y} ETgX code is shown when documenting the usage of the nota-
tion in text using the KX package aspen.

Figure 2: In the text, color is used to distinguish different features

1 Introduction

Why AspeEN then? One motivation is to have an expressive notation that can be used in publications
where security protocols are presented. Another motivation is to have a notation that can be used
when teaching security related topics. This text is an attempt to document a notation that have been
used and refined over years. The notation should be familiar, but with some new useful refinements and
contributions not found in similar notations. It should also be possible to use the notations together with
other notations, like BAN logic. A more detailed discussion on the choices made for the ASPEN notation
is found in Appendix [B.1] [Notes on the suggested notation] The BIiX package can be downloaded from
CTAN or its home:

https://www.pgl2.org/dist/texmf/tex/latex/aspen/

When using AsPEN, colors can be used to distinguish different types of features. Figure[2]illustrates how
the different features are colored. Colors are optional when using the notation. They are enabled by
the color option to the ITEX package aspen. Colors are only added for readability. The KIX package

aspen provides different color profiles for typesetting the notation (see Appendix
Eypesetting options).

If the aspen package is loaded with the option ban, the BAN logic notation from “A Logic of Authenti-
cation» [7] is included (see Section [2.2] and [3.2)).

https://ctan.org/pkg/aspen
https://www.pg12.org/dist/texmf/tex/latex/aspen/

2 The notations

In the description of the notation below, notation that might be obvious is included. It is done for
completeness and consistency. For some notations, usage examples are provided. These examples

might include notations explained later in the text.

2.1 ASPEN

Notation

Description

= means “is equal”, either as a statement or a claim (e.g., a claim that can be,
or has to be, verified). <, <, > and > means “less than”, “less than or equal”,

“greather than”, and “greather than or equal”, respectively. These notations are
typically used to compare counters and timestamps in protocols.

The binary operator @ is exclusive or, and the binary operator . is concatena-
tion (used to concatenate two values or strings). The concatenation operator has
precedence over the exclusive or operator. In Section other options for the
binary concatenation operator is presented.

=,

x = y means “y, if x”. x & y means “y, if and only if x”. This is an example
used with the Verify function (see below for the description of other notations
used in the example):

Verify(K,, {m}) =true & K,=K,

A

X~y

We use a leads-to arrow ~ to show more details or to unpack a value or a message.
The following example shows that a digital signature is actually a cryptographic
hash value of the message encrypted with a private key (see below for the de-
scription of other notations used in the example):

Sig{m}s ~ {H{m}},-

true, false

The boolean values true and false. The value true will also be used to show that an
operation completed with success (if that is important). For example, when we
verify a digital signature and it is found valid, the function doing the verification
returns the value true. Otherwise, the value false is returned.

A shared or secret key, also known as a symmetric encryption and decryption key.

A shared key for A and B (this notation can be extended, for example with K, 5 -
for a key shared between A, B, and C, or K, _,, for a key shared among n group
members M,,...,M,).

A session key for C and S (this notation can be extended, for example with K g
for a key session key shared between A, B, and S, or KA/me
shared among n group members M, ..., M,).

,B,S
for a session key

The public key of a public-private key pair of A: (K,,K,).

The private key of a public-private key pair of A: (K, K,).

A structured value or message containing m. A structured value can be nested.

t{m} A structured value or message with the type t. An example of a structured value
marked with the type Sig:
Sig{m}“J has the type Sig and the superscript [A] (signed by A)
A—> B : {m} Message {m} sent from A to B.
func(x,y) A function func with two arguments x and y (Encrypt and Decrypt described below

are examples of such a function).

func(x,y) >z

We use an arrow — to illustrate what a function produces (in this case z). The fol-
lowing example shows that the function Encrypt produces a ciphertext encrypted
with the given shared key (see below for the description of other notations used
in the example):

Encrypt(K, 5, m) — {m}KA_ﬁ

{m)

In general, a subscripted structured value means an encrypted value or message
(a ciphertext), where the subscript [represents the encryption key (or the holder
of the encryption key). This is an example where the plain text m is encrypted
with the encryption key K:

{m}y

{m}

In general, a superscripted structured value means a signed value or message,
where the superscript [represents the key used to sign (or the holder of the key
used to sign). This is an example where the plain text m is signed by principal A:

{m}

Encrypt(K, 5, m)

Encrypt plain text m with shared key K, p:

Encrypt(KA,B, m) — {m}K,\B

Decrypt(KA,B, c)

Decrypt cipher text ¢ with shared key K, 5, where ¢ = {m}, :

Decrypt(Ky 3, ¢) ~» Decrypt(K, 5, {m}y,) = m

Encrypt(KK, m)

Encrypt plain text m with public key K, :

Encrypt(K,,m) = {m}, +

Decrypt(K,,c)

Decrypt cipher text ¢ with private key K,, where ¢ = {m} Kt
A

Decrypt(K, ,c) ~» Decrypt(K,, {m},-)—m
A

H{m}

A cryptographic hash value of m.

H(m)

A cryptographic hash function producing the cryptographic hash value of m:

H(m) — H{m}

MAC{m}*

The message authentication code of m with key K,.

CMAC{m}" The cipher-based message authentication code of m with key K,.
HMAC{m}* The HMAC message authentication code of m with key K,,.
MAC(K,, m) The message authentication code function producing the message authentication
code of m with key K ,:
MAC(K,, m) — MAC{m}*
CMAC(K,, m) The cipher-based message authentication code function producing the cipher-
based message authentication code of m with key K ,:
CMAC(K,, m) — CMAC{m}*
HMAC(K,, m) The HMAC message authentication code function producing the HMAC message
authentication code of m with key K ,:
HMAC(K,, m) = HMAC{m}*s ~» H{EA ® opad . H{K , ® ipad . m}}
— { H{K,} if K, is larger than block size
K, =)
K, otherwise
The two block-sized paddings, opad (outer padding) and ipad (inner padding),
each consists of a repeating byte value (0x5c and 0x36, respectively).
Sig{m} Digital (cryptographic) signature of m signed by A.
Sig{m}* Digital (cryptographic) signature of m signed with private key K, :
Sig{m}*4 ~ {H{m}}K
A
Sig{m}4+] Digital (cryptographic) signature of m based on shared secret between A and B.
Sig{m}as Digital (cryptographic) signature of m signed with the shared key K, ; (a shared
secret between A and B):
Sig{m}s ~ {H{m}},, ,
Sig(K,, m) Function creating a digital (cryptographic) signature of m with private key K, :

Sig(K,,m) — Sig{m}*

Sig([A,B],m)

Function creating a digital (cryptographic) signature of m based on shared secret
between A and B:

Sig([A,B],m) — Sig{m}[/\,/;]

Sig(Ky 3, m)

Function creating a digital (cryptographic) signature of m with the shared key
K, p (a shared secret between A and B):

Sig(Ky g, m) — Sig{m} s

{m}[AJ

m is signed by A (m signed is a combination of m itself and a digital signature of
m, in this case a digital signature signed by A):

{m}* ~ {m, Sig{m}"'}

{m}

m is signed with private key K, (m signed is a combination of m itself and a digital
signature of m, in this case a digital signature signed with K, implemented by
encrypting the cryptographic hash value of m with &,):

{m}*s ~ {m, Sig{m}*s } ~ {m, {H{m}}, }

{m}A2)

m is signed with shared secret of A and B (m signed is a combination of m itself
and a digital signature of m, in this case a digital signature signed with a shared
secret of A and B):

{m}[/\,/;] Y {m, Sig{m}[/‘”"]}

{m)fs

m is signed with a shared secret of A and B; the shared key K, ; (m signed is a
combination of m itself and a digital signature of m, in this case a digital signature
signed with the shared key K, ; implemented by encrypting the cryptographic
hash value of m with K, 3):

(mys2 ~ {m, Sigm}s} ~ {m, {Fm}}.,,

Sign([A], m)

A signs m (m signed is a combination of m itself and a digital signature of m,
in this case a digital signature signed by A implemented by [A] encrypting the
cryptographic hash value of m):

Sign([A],m) = {m}"" ~ {m, Sig{m}""/}

Sign(K,, m)

Sign m with private key K, (m signed is a combination of m itself and a digital
signature of m, in this case a digital signature signed with K, implemented by
encrypting the cryptographic hash value of m with &,):

Sign(K,,m) — (m}s ~ {m, Sig{m}K.X} ~ {m, {H{m}}KA—}

Sign([A,B],m)

Sign m with shared secret of A and B (m signed is a combination of m itself and a
digital signature of m, in this case a digital signature signed with a shared secret
of A and B implemented by encrypting the cryptographic hash value of m with a
key based on a shared secret of [A] and [B]):

Sign([A,B], m) — {m}*F1 ~ {m’ Sig{m}“””}

Sign(K, g, m)

Sign m with a shared secret of A and B; the shared key K, ; (m signed is a com-
bination of m itself and a digital signature of m, in this case a digital signature
signed with the shared key K, ; implemented by encrypting the cryptographic
hash value of m with K, 5):

Sign(Ky g, m) — {m}s ~ {m: Sig{m}ss } D {m: {H{m}}KAYB}

Verify(K,,s) Verify that the signed structured value (message) s is signed by the matching
private key K, of public key K /l and, as a consequence, verify that s is signed

by A:
Verify(Kg,s) ~ Verify(Kg, {m}m) ~ Verify(K/:, {m, Sig{m}m}) ~
Verify(K/:, {m, Sig{m}K;}) ~ Verify(Kg, {m, {H{m}}K;}) g
Decrypt(K/:,Sig{m}["]) =H{m} ~
Decrypt(K;,Sig{m}K:) =H{m} ~ & K, =K,
Decrypt(K/:, {H{m}}K;) =H{m}
Verify(K,,s) = true & K, =K_
Cert{A, K, }I¢] A certificate where CA C binds identity A to public key K, (where ... is other

certificate related meta-data):

Cert{A, K}V ~ (A K, .. ¢

Cert{A, K;}K:‘ A certificate where a CA with private key K. binds identity A to public key K,
(where ... is other certificate related meta-data):

Cert{A, K, }c ~ {AK,, ...}

Verify(K;, Cert{A, Kg Je) ~ Verify(K;, {4, K/:, . Ye) = true

2.2 BAN logic

The description below of the BAN logic notation is copied directly, with some minor modifications, from
the original paper presenting the BAN logic, “A Logic of Authentication” [[7].

Notation Description

Al=X A believes X, or A would be entitled to believe X. In particular the principal A may act as
though X is true. This construct is central to the BAN logic.

A<X A sees X. Someone has sent a message containing X to A, who can read and repeat X
possibly after doing some decryption.

Al~X A once said X. The principal A at some time sent a message including the statement X.
It is not known whether the message was sent long ago or during the current run of the
protocol, but it is known that A believed X when A sent the message.

A X Ahas jurisdiction over X (A controls X). The principal A is an authority on X and should be
trusted on this matter. This construct is used when a principal has delegated authority
over some statement. For example, encryption keys need to be generated with some
care, and in some protocols certain servers are trusted to do this properly. This may be
expressed by the assumption that the principals believe that the server has jurisdiction
over statements about the quality of keys.

#(X) The formula X is fresh, that is, X has not been sent in a message at any time before the
current run of the protocol. This is usually true for nonces, that is expressions generated
for the purpose of being fresh (nonce—number used once). Nonces commonly include
a timestamp or a number that is used only once, such as a sequence number.

AR A and B may use the shared key K to communicate. The key K is good, in that it will
never be discovered by any principal except A or B, or a principal trusted by either A
or B. (In AsPEN, a shared key A and B may use to communicate can be denoted K, 5.)

A A has K as a public key. The matching secret key (the inverse of K, denoted K ') will
never be discovered by any principal except A, or a principal trusted by A. (In ASPEN,
a public key of A can be denoted K,, and the inverse of K,, the private key, can be
denoted K, .)

X

=B The formula X is a secret known only to A and B, and possibly to principals trusted by
them. Only A and B may use X to prove their identities to one another. Often X is fresh
as well as secret. An example of a shared secret is a password.

{X}x This represents the formula X encrypted under the key K. Formally, {X}, is an abbrevi-
ation for an expression of the form {X}, from A. We make the realistic assumption that
each principal is able to recognize and ignore his own messages; the originator of each
message is mentioned for this purpose. In the in terests of brevity, we typically omit this
in our examples.

X)y This represents X combined with the formula Y it is intended that Y be a secret, and that
its presence prove the identity of whoever utters(X),. In implementations, X is simply
concatenated with the password Y'; our notation highlights that Y plays a special role,
as proof of origin for X. The notation is intentionally reminiscent of that for encryption,
which also guarantees the identity of the source of a message through knowledge of a
certain kind of secret.

In the AsPEN notation, when we write K, 3, it is implicit that A and B may use K, ; to communicate.
We can use the BAN logic notation to make it explicit:

K.'Lly‘
A+«— B

In a similar manner, KX is in the AsPEN notation implicit a public key of A. We can use the BAN logic
notation to make it explicit:

Ky
[d A

Both the BAN logic notation and AsPEN use the notation {m}, for the formula m encrypted under the
key K (m encrypted with the key K). In this case, AspEN has adopted the notation used in BAN logic
and in a lot of other related publications and text books.

3 Use the notations in text

This section explains how to use this notation in KTEX documents. The new KX commands and envi-
ronments used are defined in the KIgX package aspen.

We will in the text include notation examples that might not make sense in a security protocol perspec-
tive. However, they are included for completeness. We will in the documentation try to include a wide
range of possibilities available from the KTX package aspen.

For commands with arguments, the argument types are given using a notation inspired by the xparse
argument specification:

m Mandatory arguments B Optional bracket sizes (big, Big, ...)
Examples: \cmd{arg} Examples: \cmd, \cmd [Big]

o Optional arguments T Optional key types: *, -, +, !, or '
Examples: \cmd, \cmd [arg] Examples: \cmd, \cmd-, \cmd!

O{default} Optionals with default value _{} Markers (give more details)
Examples: \cmd, \cmd [arg] Examples: \cmd_{arg}

s Optional stars (alternative version) — Makes a command (with arguments)
Examples: \cmd, \cmd* Examples: \mktval: om — sB_{}m

We can use this notation to specify the type of the arguments to a command. For example, om says
that the command takes two arguments where the first one is optional (in square brackets). We use the
symbol — to specify the arguments of a command created by another command (for example \mktval).

3.1 ASPEN

The table below lists the AsPEN notation with the matching KTEX commands. More examples of usage
are found in Section [4}

Notation ETEX code and description

Some command markers (key type markers) are used throughout the AsPEN KX
package:
* : Means no specific variant (argument is the key, not the label of it): \key*{K}
-: Mark that it is a private key (from a public-private key pair): \key-{A}
+: Mark that it is a public key (from a public-private key pair): \key+{A}
! : Mark by principal instead of key (the key of): \key!{A}
' : Mark that it is temporary (session key or limited lifetime): \key'{A}
\key*{K} — K
\sig-{A}{m} - Sig{m}*
\encrypt+{B}{m} — Encrypt(K;, m)
\signed!{S}m} - {m}
\decrypt'{A,B}c} — Decrypt(K} ,,c)

Arguments: T (the symbol used for these optional markers in argument specifications)

_{..}, where the marker is used to provide more details about a structured value
or a function. A few examples where the markers are MD5, RSA, AES, DSA, and
SHA-2:

\chash_{MD5}{m} — Hyp,{m}
\encrypt+_{RSA}B}{m} = EnCIyptRSA(Kl;, m)

\decrypt'_{AES}{A,B}{c} — DeCWPtAES(KA,B’C)

\sig-_{DSA}{S}{m} — Sigpea{m}Ss
\hmac_{SHA-2}{A}{m} — HMACgy, ,{m}*

Arguments: _{} (the symbol used for such optional embellishment in argument specifications)

=<,5,>,2> =,<,\1eq,>,\geq, used to compare values.

P, . \axor, \aconcat, used as binary operators for exclusive or and concatenation (used
to concatenate two values or strings), respectively.

=, & \aifthen,\aiffthen, used to reason about protocols and protocol steps (mean-
ing, “if, then” and “if, and only if, then”, respectively).

X~y x \leadsto y, used to unpack more details.

1,2 \aval{1},\aval{2}, used for values.

Arguments: \aval: m
\aval{<value>}

true, false \atrue,\afalse, used for the boolean values.

AB,S \apri{A},\apri{B},\apri{S}, used for principals.

Arguments: \apri: m
\apri{<principal>}

N}, N¢ \anonce{N_A},\nonce{S}, used for nonces. The \nonce command has an op-
tional first argument to change the symbol (the letter): \nonce [n]{0} — nj

Arguments: \anonce: m, \nonce: om
\anonce{<name>}, \nonce [<symbol>]{<td>}

RX,R},,R/1 \arandom{R_x},\random{y},\random' {1}, used for random values (the ’ hints
about limited useful lifetime). The \random command has an optional first argu-
ment to change the symbol (the letter): \random[r]{z} — 1,

Arguments: \arandom: m, \random: om
\arandom{ <name>}, \random [<symbol>]{<id>}

Ty, Ts, L, L4 \ats{T_A},\ts{S}\attl{L},\tt1{1}, used for time related values, like time
stamps and lifetime (time to live). Both the \ts and \ttl command have
an optional first argument to change the symbol (the letter): \ts[t]{0} — ¢,
\tt1[11{1} — [

Arguments: \ats: m, \ts: om, \attl: m, \ttl: om
\ats{<name>}, \ts [<symbol>]{<id>}, \attl{<name>},
\ttl[<symbol>]{<zd>}

“Hello” \astr{Hello}, used for text strings.

Arguments: \astr: m
\astr{<str>}

10

X,y \avar{x},\avar{y}, used for variables.

Arguments: \avar: m
\avar{<variable>}

K \akey{K}, used for (non-specific) encryption keys. If you mark the key command
with a *, the produced output is the same: \key*{K} — K

Arguments: \akey: m, \key: Tm
\akey{<key>}, \key<T>{<key>}

Ky, K g \key{A},\sharedkey{A,B}, used for shared (secret/symmetric) keys (provided
by two different KTEX commands, where the first is a more compact version; use
whatever you prefer). The \sharedkey command has an optional first argument
to change the symbol (the letter): \sharedkey [k]{B} — kj

Arguments: \key: Tm, \sharedkey: 0{K}m
\key{<id>}, \sharedkey [<symbol>]{<id>}

K o,K; 5 ¢ \key'{C,S},\sessionkey{A,B,S}, used for session keys (provided by two dif-
ferent ITX commands, where the first is a more compact version; use whatever
you prefer). The \sessionkey command has an optional first argument to change
the symbol (the letter): \sessionkey[k]{A,B} — kA’B

Arguments: \key: Tm, \sessionkey: 0{K}m
\key'{<%d>}, \sessionkey[<symbol>]{<id>}

KX, K; \key+{A},\pubkey{B}, used for public keys (provided by two different KTjX com-
mands, where the first is a more compact version; use whatever you prefer). The
\pubkey command has an optional first argument to change the symbol (the let-
ter): \pubkey [k]{S} — k¢

Arguments: \key: Tm, \pubkey: 0{K}m
\key+{<id>}, \pubkey [<symbol>]{<id>}

K,,K, \key-{A},\privkey{B}, used for private keys (provided by two different KTEX
commands, where the first is a more compact version; use whatever you prefer).
The \privkey command has an optional first argument to change the symbol (the
letter): \privkey [k]{A} — k,

Arguments: \key: Tm, \privkey: 0{K}m
\key-{<%d>}, \privkey[<symbol>]{<id>}

[A] \aname{A}, typically used to indicate who signed (or encrypted) a message, but no
specific key is given, known or relevant. If you mark a key with a !, the produced
output is the same: \key!{A} — [A]

Arguments: \aname: m, \key: Tm
\aname{<td>}, \key!{<7id>}

M,-M, \agroup{M}, specifies a group and is typically used as a label for a shared key

shared within a group with n members:
\key{\agroup{M}} — Ky
\agroup [0] [s]{M}, used when th group member indexes are non-standard:
\key{\agroup[0] [s]{M}} — Ky u
\agroup*{M}, typically used in a text when referring to a group (with n members):

\key{\agroup*{M}} — Kury,.m,

11

\agroup* [0] [s]{M}, used when group member indexes are non-standard:

\key{\agroupx[0] [s]{M}} — Ky

050+ M5

Arguments: \agroup: s0{1}0{n}m
\agroup<#>[<first>] [<last>]{<td>}

{m}, {A, B} \sval{m},\msg{\apri{A},\apri{B}}, used to type a structured value or mes-
sage (a message can be seen as structured value).

Arguments: \sval: Bm, \msg: Bm

\sval[<size>]{<value>}, \msgl[<size>]{<message>}

{m}

\sval [big]{m}, or \msg[big] {m}, where first optional size argument can be big,
Big, bigg, or Bigg for increased size of parenthesis (typically used with nested
structured values and/or functions):

\sval{x} — {x}
\svallbigl{\sval{x}} — {{x}}
\sval[Bigl{\sval [big] {\sval{x}}} — {{{x}}}

\sval [bigg] {\sval [Big] {\sval [big] {\sval{x}}}} — {{{{x}}}}

We can even use more size specifiers: big, Big, bigg, Bigg, biggg, Biggsg,
bigggg, Biggee, biggeee, and Bigggee:

(e}

The optional size argument applies for all AsPEN ITEX commands that produces a
pair of parenthesis, both ordinary parenthesis and curly brackets. A few examples
(see below for more details on these commands):

\tval [big] {Type}{m} - Type{m}
\send[big] {A}{B}m} — A—B:{m}
\func [big] {Func}{x,y} — Func(x,y)

\encrypted[big] {A,B}{m} — {m}KM

Arguments: \sval: Bm, \msg: Bm
\sval[<size>]{<value>}, \msgl[<size>]{<message>}
Type{m} \tval{Type}{m}, used for a typed structured value where the first argument is

the type. The \tval# variant is used for a typed structured value where the first
argument is the type, but the value is not wrapped with curly brackets. This is
typically used when the value is already wrapped as a structured value (e.g., en-
crypted or signed data). This is an example with a Kerberos Authenticator as a
typed structured value:

\tval*{KA}{\encrypted{S,C}{\apri{C}, \textit{Addr}_C,\ts{t}}}

— KA{C,AddrC; TZ}KS‘C

12

The marker (_{RSA} in the example below) can be used to give more details about
the typed structured value:

\tval*{KA}_{RSA}{\encrypted{S,C}{\apri{C}, \textit{Addr}_C,\ts{t}}}

— KAgu{C,Addre, T, }, .

Arguments: \tval: sBm_{}m
\tval<*>[<size>]{<type>}_{<marker>}{<value>}

A— B :{m} \send{A}{B}{m}, used to specify that a message {m} is sent from A to B. The
\send* variant is used to specify that the message is not wrapped as a structured
value or message. This is typically used when what-is-sent is already wrapped as
a structured value (e.g., encrypted or signed data):

\send*{A}{B}{\encrypted+{B}{m}} — A-—B:{m} +

B
\send*{A}{BH \encrypted+[bigl {B}{\chash{m}}} — A— B:{H{m}}
B

Arguments: \send: sBmmm
\send<*>[<size>]{<sender>}{<receiver>}{<message>}

Func(x,y) \func{Func}{x,y}, used for any functions. An optional last argument is used if
a return value of the function is given:

\func{Func}{x,y}[z] — Func(x,y)—z

Arguments: \func: Bm_{}mo
\func[<size>]{<name>}_{<marker>}{<arguments>} [<returns>]

{m}, . \encrypted{A,B}{m}, where the message is encrypted with an shared secret en-
cryption key (in this case, the shared key K, ; of A and B). The other options (with
markers) are:

\encrypted*{K}{m} - {m}¢
\encrypted+{A}{m} - {m},+
A
\encrypted-{A}{m} - {m} -
A
\encrypted! {A}{m} - {m}y
\encrypted'{A,B}mn} — {m}K//“g
Arguments: \encrypted: TB_{}mm

\encrypted<T>[<size>] _{<marker>}{<key>}{<plain>}

Encrypt(K, 5, m)

Arguments:

\encrypt{A,B}{m}, where the value m is encrypted with a secret shared encryp-
tion key (in this case, a shared key of A and B). Other options are *, +, -, !, and '
(see above for explanation). Since \encrypt is a function, we can include a return
value as an optional last argument:

\encrypt+{B}{m} [\encrypted+{B}m}] — Encrypt(K,,m)— {m}

\encrypt: TB_{}mmo
\encrypt<T>[<size>] _{<marker>}{<key>}{<plain>}[<returns>]

13

Decrypt(K, g, ¢)

\decrypt{A,B}{\avar{c}}, where the cipher text c is decrypted with an secret
shared encryption key (in this case, a shared key between A and B). Other options
are *,+, -, !, and ' (see above for explanation). Since \decrypt is a function, we
can include a return value as an optional last argument:

\decrypt-{B}{\encrypted+{B}{m}}[m] — Decmqn(Kg,{nﬂK+)—+n1

Arguments: \decrypt: TB_{}mmo
\decrypt<T>[<size>] _{<marker>}{<key>}{<cipher>}[<returns>]

H{m} \chash{m}, used for a cryptographic hash value of m.

Arguments: \chash: B_{}m
\chash[<size>] {<marker>}{<value>}

MAC{m}* \mac{A}{m}, used for message authentication code of m with K.

Arguments: \mac: TB_{}mm
\mac<T>[<size>] _{<marker>}{<key>}{<value>}

CMAC{m}* \cmac{A}{m}, used for cipher-based message authentication code of m with K.

Arguments: \cmac: TB_{}mm
\cmac<T>[<size>] _{<marker>}{<key>}{<value>}

HMAC{m}* \hmac{A}{m}, used for HMAC message authentication code of m with K,,.

Arguments: \hmac: TB_{}mm
\hmac<T>[<size>] _{<marker>}{<key>}{<value>}

H(m) \chashf{m}, used for a cryptographic hash value function producing the crypto-
graphic hash value of m. Since \chashf is a function, we can include a return
value as an optional last argument:

\chashf{m} [\chash{m}] — H(m)— H{m}

Arguments: \chashf: B_{}mo
\chasf [<size>] _{<marker>}{<value>}[<returns>]

MAC(K,, m) \macf{A}{m}, used for a message authentication code function with the argu-
ments K, and m. Since \macf is a function, we can include a return value as an
optional last argument:

\macf{A}m} \mac{AHn}] — MAC(K,,m)—MAC{m}"

Arguments: \macf: TB_{}mmo
\macf <T>[<size>] _{<marker>}{<key>}{<value>} [<returns>]

CMAC(K,, m) \cmacf{A}{m}, used for a cipher-based message authentication code with the ar-
guments K, and m. Since \cmacf is a function, we can include a return value as
an optional last argument:

\cmacf{A}{m}[\cmac{A}m}] — CMAC(K,, m)— CMAC{m}*

Arguments: \cmacf: TB_{}mmo

\cmacf<T>[<size>] _{<marker>}{<key>} <value>}[<returns>]

14

HMAC(K,, m) \hmacf{A}{m}, used for a HMAC message authentication code with the arguments
K, and m. Since \hmacf is a function, we can include a return value as an optional
last argument:

\hmacf{A}{m} [\hmac{A}{m}] — HMAC(K,, m)— HMAC{m}*

Arguments: \hmacf: TB_{}mmo
\hmacf <T>[<size>] _{<marker>}{<key>} <value>} [<returns>]

Sig{m}K; \sig-{A}{m}, used for the signature of A on m, where the - says that the signature
is signed with a private key (in this case, the private key of A).

Arguments: \sig: TB_{}mm
\sig<T>[<size>] _{<marker>}{<key>}{<value>}

Sig(K,, m) \sigf-{A}{m}, used to create a signature of A on m, where the - says that the
signature is signed with a private key (in this case, the private key of A).

Arguments: \sigf: TB_{}mmo
\sigf<T>[<size>] _{<marker>}{<key>}{<value>}[<returns>]

{m}<s \signed-{A}{m}, used for m signed, where the - says that the signature is signed
with a private key (in this case, the private key of A).

Arguments: \signed: TB_{}mm
\signed<T>[<size>] _{<marker>}{<key>}{<value>}

Sign(K,,m) \sign-{A}{m}, used to sign m, where the - says that the signature is signed with
a private key (in this case, the private key of A).

Arguments: \sign: TB_{}mmo

\sign<T>[<size>] _{<marker>}{<key>}{<wvalue>}[<returns>]

Verify (K, s)

Arguments:

\verify+{A}{\avar{s}}, used to verify the signed data s, where the + says that
the signed data is verified towards the public key of A.

\verify: TB_{}mmo

\verify<T>[<size>] _{<marker>}{<key>}{<value>} [<returns>]

Cert{B, K, }|*]

\certificate!{C}{\apri{B},\key+{B}}, used for a certificate binding the
public key Kg (public key of B) to the principal B, where ! says that the signa-
ture is signed by the CA C.

Arguments: \certificate: TB_{}mm
\certificate<T>[<size>] _{<marker>}{<key>}{<content>}

Cert{A,K +}K<T \cert-{C}{A}, used for a certificate binding the public key +A (public key of A)
to the principal A, where the - says that the signature is signed with a private key
(in this case, the private key of the CA C).

Arguments: \cert: TB_{}mm
\certificate<T>[<size>] _{<marker>}{<key>}{<principal>}

X{m} \mktval{X}, used to create a new typed structured value type where the argument

is the type. In this example, the result is a new KIgX command \tvalX (created
combining the prefix tval and the given name). We can for example use this to
create a new typed structured type for a specific message type:

\mktval{ReqMsg}

— ReqMsg{A, m}
\tvalReqMsg{\apri{A},m}

15

The new command will have a * version similar to the \tval* command (the value
is not wrapped with curly brackets). The \mktval has an optional first argument
to specify the name of the command created:

\mktval [reqmsg] {RMsg}

— RMsg{m}
\regmsg{m}
Arguments: \mktval: om — sB_{}m
\mktval[<cmd>]{<type>}
— \cemd<*>[<size>] _{<marker>}{<value>}
X{m}, \mketval{X}, used to create a new encrypted typed structured value type where
the argument is the type. In this example, the result is a new KIEX command
\etvalX (created combining the prefix etval and the given name). We can for
example use this to create a new typed structured type for an encrypted message
type:
\mketval{EMsg}
— EMsg{m};,
\etvalEMsg'{C,S}{m} '
The \mketval has an optional first argument to specify the name of the command
created (here we define the command \aka for Kerberos Authenticators):
\mketval [aka] {KA}
— KA{C,Addrg, TA}K; "
\aka'{S,C}H\apri{C}, \textit{Addr}_C,\ts{s}} '
In this case, it might be a good idea to create a new KX command \ka imple-
mented with \aka and the proper arguments (implementation details not shown):
\newcommand{\ka}[3]{\aka'{...}}
— KA{C,Addr, 'lji}K; .
\ka{S,CHC}{s} o
Arguments: \mketval: om — TB_{}mm
\mketval [<cmd>]{<type>}
— \emd<T>[<size>] _{<marker>}{<key>}{<value>}
X{m}< \mkstval{X}, used to create a new signed typed structured value type where the
argument is the type. In this example, the result is a new KTgX command \stvalX
(created combining the prefix stval and the given name). We can for example
use this to create a new typed structured type for an signed message type:
\mkstval{SMsg} —
— SMsg{m}*
\stvalSMsg-{A}{m}
The \mkstval has an optional first argument to specify the name of the command
created:
\mkstval [smsg] {SMsg}
— SMsg{m} -
\smsg-{S}H{m} °
Arguments: \mkstval: om — TB_{}mm

\mkstval [<ecmd>]{<type>}
— \cemd<T>[<size>] _{<marker>}{<key>}{<value>}

16

X(x,y)

Arguments:

\mkfunc{X}, used when creating a new function type where the argument is the
name of the function type. In this example the result is a new KIgX command
\funcX (created combining the prefix func and the given name). We can for
example use this to create a new function type for a creating a Kerberos Authenti-
cator:

\mkfunc{KA}

e KA(CJAddrC’ Ts)
\funcKA{\apri{C}, \textit{Addr}_C,\ts{s}}

The \mkfunc has an optional first argument to specify the name of the command
created:
\mkfunc [kaf]{KA}
— KA(C,Addr, T.)
\kaf{\apri{C}, \textit{Addr}_C,\ts{s}}

\mkfunc: om — B_{}mo
\mkfunc [<ecmd>]{<name>}
— \cmd[<size>] _{<marker>}{<arquments>}[<returns>]

X(KA;XJ’)

Arguments:

\mkkfunk{X}, used when creating a new function type for functions where the first
argument is an encryption key. The argument is the name of the function type. In
this example the result is a new KIEX command \funcX (created combining the
prefix func and the given name) with two arguments; the first argument is an
encryption key and the second argument is a comma separated list of the rest of
the function arguments. We can for example use this to create this new function
type with an encryption key as the first argument (a session key in this example):

\mkkfunc{KeyF}
— KeyF(K},Addr, T,)

\funcKeyF' {A}{\textit{Addr},\ts{s}}

The \mkkfunc has an optional first argument to specify the name of the command
created:
\mkkfunc [kf] {KeyF}
— KeyF(K},Addr, T,)
\kf ' {A}{\textit{Addr},\ts{s}}

\mkkfunc: om — TB_{}mmo
\mkkfunc [<cmd>] {<name>}
— \emd<T>[<size>] _{<marker>}{<key>}{<arguments>}[<returns>]

17

3.2 BAN logic

The table below lists the BAN logic notation with the matching KTgX commands. These notations are
available when the ETEX package aspen is loaded with the option ban.

Notation KTEX code and description

|= \believes, used to state that someone believes something (and acts as it is true):

\apri{A}\believes\aval{X} — A|=X

< \sees, used to state that someone sees something (Someone has sent a message to some-
one and they have bee able to read it):

\apri{A}\sees\aval{X} — A<X

~ \oncesaid, used to state to someone at some time said something (someone some time
sent a message including the statement):

\apri{A}\oncesaid\aval{X} — A|~X

= \controls, used to state that someone has jurisdiction (controls) over something:

\apri{A}\controls\aval{X} — A= X

#(X) \fresh{X}, used to state that something is fresh (X has not been sent in a message at
any time before in the current run of the protocol).

— \asharedkey{K}, used to state that a key is shared:

\apri{A}\asharedkey{\key{A,B}}\apri{B} — AmB

— \thepubkey{K}, used to state that a key is a public key of someone:
\thepubkey{\key+{A}}\apri{A} — il» A

X

= \asecret{X}, used to state that a secret (X, in this case) is only known to them:
\apri{A}\asecret{X}\apri{B} — A é B

X}« \encryptedwith{K}{X}, used to state that something is encrypted with the key (X is

encrypted with the key K).
(x)y \combine{x}{y}, used to state that x is combined with y:

\combine{\aval{X}}{\aval{Y}} — (X),

18

3.3 Series of steps

The KTEX package aspen provides support for presenting a security protocol as a series of messages
and steps with the steps environment. A message between to principals is in the steps environment
is typeset with the familiar \send command. With \send commands, the steps environment can be
used like this:

\begin{steps}
\send*{A}{B}{\encrypted+{B}{m_1}} [m1] \\ A— B {m}, -
\send*{B}{A}{\encrypted+{A}{m_2}} [m2] B—> A:{my},+
\end{steps} A

Notice that each step is separated by the \\ command. Each step is labeled and can be refereed to by
its name (\ref{m1} — [Mj] and \ref{m2} — [M)). The steps* version of the environment is without
the labels:

\begin{stepsx*}
\send+{A}{B}{\encrypted+{BHm_1}} \\ | A= B:{mi}+
\send*{B}{A}{\encrypted+{A}{m_23}} B— A:{m,} +
\end{steps*} 9

By default, the steps environment has two types of labels; M for messages and S for other steps. In
the example above only messages (\send commands) are used. Other steps are given with the \astep
or the \astepat commands. In the following example the \astep command is used and the space
between the label and the step is adjusted with the optional key-value argument 1space (the default
value is 1.5em):

\begin{steps}[1lspace=1em]
\astep{\encrypt+{B}{m_1}%
(\encrypted+{B}{m_1}1} \\ .
\astep{\sign-[big] {AHY Encrypt(Ky,my) = {my} .+
\encrypted+{B}{m_1}1}7% Sign(K,,{m;} +)— {{m;} + }f
[{\signed-[big] {A} (G tmalig) = Hmlg
\encrypted+{B}{m_1}}}1}
\end{steps}

The optional key-value argument rmarg sets the right margin width of the steps environment and 1marg
sets the left margin width of the steps environment. The default margin widths are \tabcolsep. In
the following example the margins are removed:

\begin{steps*}[1marg=0pt,rmarg=0pt]
\astep{No margins} No margins
\end{steps*}

We can also change the margins, and the space between the label and the step, by adjusting the lengths
\stepsleftmargin, \stepsrightmargin and \stepslabelspace. To change these values for the
whole document we can place these commands at the beginning of the KX file (after the KX package
aspen is loaded):

\setlength{\stepsleftmargin}{Opt}
\setlength{\stepsrightmargin}{Opt}
\setlength{\stepslabelspace}{lem}

19

The \astepat command can be used to specified where a step is performed. The command has an extra
first argument where this is specified (in this example, at principal A):

\begin{stepsl}*
\astepat{A}{\sign-{A}{m_11}%
[(\signed-{A}{m_1}1} \\ _ -
\astepat{A}{\encrypt+[big] {B}{ At Sign(K,,mp) = {my }
\signed-{A}m_1}}% At Encrypt(Ky, {my}s) = {{m;} }, -

[{\encrypted+[bigl {B}{%
\signed-{A}m_1}}}1}
\end{steps}

The * marker of the steps environment (not to be confused with the steps* version of the environ-
ment) means that the counters of the labels are not reset (the counting continues from the previous
steps environment).

It is also possible to add new types of labels with the optional key-value argument labels. In this
example, new label types A and B are introduced and the \astepat commands are labeled with the
new label types by using the optional first argument to the command:

\begin{steps}[labels={A,B}]
\astepat [A]{A}{\encrypt+{B}{m_13}7
[(\encrypted+{B}{m_1}1} \\
\send*{A}{B}{\encrypted+{B}{m_1}} \\ A— B:{m}+
\astepat [B]{B}{\decrypt- [big] {B}% .
\encrypted+{B}{m_1}}[m_113}
\end{steps}

A EnCTypt(K;’ ml) i {m1}1<B+

B : Decrypt(K,, {ml}KZ) —

The \astepat* version of the \astepat command changes the horizontal position of the text of such
steps so the colons are aligned:

\begin{steps*} N
\send*{A}{B}{\signed-{A}m_1}} \\ A— B {m}
\astepat*{B}{\verify+{A}{\signed-{A}{m_13}}} B:\krﬁy(K;,{nq}K;)

\end{steps*}

The \astep* version of the \astep command changes the horizontal position of the text of the step in
a similar way:

\begin{steps*} -
\send*{A}{B}{\signed-{A}m_1}} \\ A— B : {m}s
\astep*{\verify+{A}{\signed-{A}{m_1}3}} V@FUW(K;,{WH}K;)

\end{steps*}

The \arawstep command is a low-level command that we usually is not necessary. In a steps* environ-
ment it has four optional arguments followed by one non-optional argument. In a steps environment
another optional first argument and an optional last argument is added related to the labels of the step.
To better understand the command we show it here used together with a \send command in a steps
environment:

\begin{steps}
\send{A}{BHu} [s1] \\ A—> B {m}
\arawstep[M] [a] [--] [b] [;]1{m} [s2] a - b;m
\end{steps}

20

A— S :{AB,N/}

S—A: {Né:B’KA,B, {KA,B’A}K,,..S }KM
A—B: {KA,B’A}KE_g

B— A: {Ny}g,,

A— B {N;—1},,

Figure 3: The original Needham-Schroeder protocol

A— S :{AB}

S—A: {T&:L;K/\,B:By{T\‘:L;K/\,B:A}Kﬂj}l{,\.s
A— B : {{T,, LKy 5, A, 1A To)x,, }
B— A {T,+ 1},

Figure 4: The Kerberos protocol

4 Notation usage examples

To illustrate the usability of the notation, a few examples where the notation is used to describe well-
known, and not so well-known, security protocols.

The Needham—Schroeder protocol [[10] aims to establish a session key between two parties on a network,
typically to protect further communication. The protocol is based on a symmetric encryption and it forms
the basis for the Kerberos protocol. In AspEN, the original Needham-Schroeder protocol is written like
seen in Figure |3l N/ and N; are nonces and the shared key K, 5 should be fresh, {(K,).

The Kerberos protocol [12] is based on the Needham-Schroeder protocol, but makes use of timestamps
as nonces to remove the problems of the Needham-Schroeder protocol and to reduce the number of
messages needed. Figure [4] shows the Kerberos protocol in AspEN. 7, and T, are timestamps and L is
a lifetime.

21

A

[1]

[2]

[3]

[4]

[s]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

References

Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The Spi calculus. Information
and Computation 148, 1-70 (1999).10.1006/inC0.1998.2740

Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed Systems. Wiley
Computer Publishing, John Wiley & Sons (2001)

Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed Systems. John
Wiley & Sons, 2 edn. (2008)

Anderson, R.: Security Engineering: A Guide to Building Dependable Distributed Systems. John
Wiley & Sons, 3 edn. (2020)

Briais, S., Nestmann, U.: A formal semantics for protocol narrations. In: De Nicola, R., San-
giorgi, D. (eds.) Trustworthy Global Computing, International Symposium, TGC 2005. Lecture
Notes in Computer Science, vol. 3705, pp. 163—-181. Springer-Verlag, Edinburgh, UK (Apr 2005).
10.1007/11580850 10

Briais, S., Nestmann, U.: |A formal semantics for protocol narrations. Theoretical Computer Science
389(3), 484-511 (Dec 2007).10.1016/].tcs.2007.09.005

Burrows, M., Abadi, M., Needham, R.: A logic of authentication. SRC Research Reports 39, DEC’s
System Research Center (Feb 1989)

Chappell, D.: Exploring Kerberos, the protocol for distributed security in Windows 2000\ Microsoft
System Journal (Aug 1999)

Davis, D., Swick, R.: Workstation services and Kerberos authentication at project Athena. LCS
Technical Memos MIT-LCS-TM-424, Massachusetts Institute of Technology, Laboratory for Com-
puter Science (Mar 1989)

Needham, R., Schroeder, M.: Using encryption for authentication in large networks of computers.
Communications of the ACM 21(12), 993-999 (Dec 1978).10.1145/359657.359659

Schiéfer, G., Festag, A., Karl, H., Wolisz, A.: |Current approaches to authentication in wireless and
mobile communications networks. TKN Technical Report TKN-01-002, Technical University Berlin,
Telecommunication Networks Group (Mar 2001)

Steiner, J.G., Neuman, C., Schiller, J.: |[Kerberos: An authentication service for open networks
systems. In: Proceedings of Usenix Winter Conference 1988. pp. 191—202 (Feb 1988)

22

https://www.sciencedirect.com/science/article/pii/S0890540198927407
https://doi.org/10.1006/inco.1998.2740
https://link.springer.com/chapter/10.1007/11580850_10
https://doi.org/10.1007/11580850_10
https://www.sciencedirect.com/science/article/pii/S0304397507006640
https://doi.org/10.1016/j.tcs.2007.09.005
https://www.cs.jhu.edu/~astubble/dss/SRC-039.pdf
https://web.archive.org/web/20040707171543/http://www.microsoft.com/msj/0899/kerberos/kerberos.aspx
https://dspace.mit.edu/handle/1721.1/149159
https://dl.acm.org/doi/pdf/10.1145/359657.359659
https://doi.org/10.1145/359657.359659
https://www.researchgate.net/publication/2388978_Current_Approaches_to_Authentication_in_Wireless_and_Mobile_Communications_Networks
https://www.researchgate.net/publication/2388978_Current_Approaches_to_Authentication_in_Wireless_and_Mobile_Communications_Networks
https://www3.nd.edu/~dthain/courses/cse66771/summer2014/papers/kerberos.pdf
https://www3.nd.edu/~dthain/courses/cse66771/summer2014/papers/kerberos.pdf

B Notes

B.1 Notes on the suggested notation

The notations used for security protocols in different articles and textbooks is not consistent. ASPEN is
an attempt to create one consistent notation. Mostly, for my own usage, but if the suggested notation
is found useful for others, it is a nice bonus. In the following, the choices of AspEN will be discussed
and compared with similar notations used in articles and textbooks. This is not an attempt to provide
a complete overview over existing notations and how they compare to AspeN. It is more a discussion
of notations that inspired AsPEN and the choices made in the suggested notation. [Feedback on the
notation are welcome.

The notation used in the original Kerberos documentation includes secret keys (called private keys, but
they are not the private key of a public-private key pair), session keys and encrypted messages.

Below, AsPEN is compared with the notation used in litterateur. The following sources of different
notations are used:

1. ASPEN

2. Kerberos: An Authentication Service for Open Network Systems [[12]

3. A formal semantics for protocol narrations [[6]]

4. Security Engineering: A Guide to Building Dependable Distributed Systems [[]]

5. Current Approaches to Authentication in Wireless and Mobile Communications Networks [11]

Description 1 2 3 4 5 *
Secret key K, K, ky K K, C
Shared key Kup — kip — — C
Session key K, Kup - - - B
Public key K, — pub(k,) KR +K, A
Private key K, — priv(k,) KR™ —K, A
Encrypted {m}y {m}K {m} {m}y {m}x C
Signed with {m}¥ — - sig, {m} — A
Signed by {m}] - - - Alm] A
Send A—B:{m} @@ A~»>B:m A—B:m A—B:m B
Hash value H{m} — H(m) h(m) H(m) B
MAC MAC{m}¥ - - MAGC, (m) - B
HMAC HMAC{m}* - - HMAC, (m) - B
Signature Sig{m}* — - — — A
Certificate Cert{A, K, }c - - Certyc1(AKR) Cert (+K,) B
Certificate by ~ Cert{A, K, }* — - - CA({A)) A

In the table, the rightmost column classifies the notation in these groups:

C: The notation is commonly used in textbooks and other publications

B: The notation (or similar) is found in textbooks and other publications

A: The notation is believed to be unique for AsPeN (invented here)

23

mailto:Anders.Andersen@uit.no?subject=Feedback Aspen

B.2 Notes on the typesetting options

Colors

The ITX package aspen provides the option color:
\usepackage [color] {aspen}

The package provides different color profiles. The default color profile is called aspen. Other color
profiles are loaded by assigning a color profile to the color option. The following statement will load
the same default color profile as the example above:

\usepackage [color=aspen] {aspen}

In addition, a few color profiles from Pygments are available: autumn, colorful, default (the default
profile of Pygments), emacs, friendly, gruvboxlight (called gruvbox-1ight in Pygments), manni,
and staroffice. Figure|s|shows the colors of all the color profiles of the AsPEN package.

Other typesetting options

The default way of typesetting the public and the private key of the public-private key pair of A in ASPEN
is with a + superscript and a — superscript, like Kg and K, respectively. This behavior can be changed
with the to package options tradpubkey and tradprivkey:

\usepackage [tradpubkey, tradprivkey]{aspen}

The result is that the public key of A will be typeset K, and the private key of A will be typeset K/;].

The default way of typesetting concatenation in AsPeN is with the binary operator “.” (used to typeset
concatenation of two values or strings). The AsPEN package provides three options for typesetting
concatenation: “.”, “|| ”, or “ + ”. This can be changed by passing a value to the concat option of
the package. The valid values are dot, dblbar, and plus. The default is “.”. In this example “ || ” is

chosen to be the concatenation operator:

\usepackage [concat=dblbar]{aspen}

24

https://pygments.org/

aspen autumn colorful

Value no 1, true Value no 1, true Value no 1, true
Principle na A Principle na A Principle na A

Key kt K, Key kt K, Key kt Ky
Nonce nn N; Nonce nmn N, Nonce nn N
Timestamp nt 7T, Timestamp nt T, Timestamp nt T
String sc “Hello” String sc “Hello” String sc “Hello”
Variable nv Xx,y,2 Variable nv Xx,y,2 Variable nv Xx,y,2
Function =nf H(m) Function nf H(m) Function =nf H(m)
Code go \key{A} Code go \key{A} Code go \key{A}
Label nl Label nl M, Label nl M,
default emacs friendly

Value no 1, true Value no 1, true Value no R
Principle na A Principle na A Principle na A

Key kt K, Key kt K, Key kt Ky
Nonce mm N Nonce mn N Nonce nn N;
Timestamp nt T, Timestamp nt T, Timestamp nt T,
String sc “Hello” String sc “Hello” String sc “Hello”
Variable nv Xx,y,2 Variable nv x,y,2 Variable nv x, v,z
Function nf H(m) Function nf H(m) Function nf H(m)
Code go \key{A} Code go \key{A} Code go \key{A}
Label nl M, Label nl M, Label nl M,
gruvboxlight manni staroffice

Value no 1, true Value no 1, true Value no 1, true
Principle na A Principle na A Principle na A

Key kt K, Key kt K, Key kt Ky
Nonce nn N, Nonce nn N Nonce nn N,
Timestamp nt T, Timestamp nt T, Timestamp nt T
String sc “Hello” String sc “Hello” String sc “Hello”
Variable nv x,y,2 Variable nv Xx,y,2 Variable nv x,y,z
Function =nf H(m) Function nf H(m) Function nf H(m)
Code go \key{A} Code go \key{A} Code go \key{A}
Label nl M, Label nl Label nl M,

Figure 5: The color profiles of the aspen package

25

	Introduction
	The notations
	Aspen
	BAN logic

	Use the notations in text
	Aspen
	BAN logic
	Series of steps

	Notation usage examples
	References
	Notes
	Notes on the suggested notation
	Notes on the typesetting options

